30 research outputs found

    A review of arthritis diagnosis techniques in artificial intelligence era: Current trends and research challenges

    Get PDF
    Deep learning, a branch of artificial intelligence, has achieved unprecedented performance in several domains including medicine to assist with efficient diagnosis of diseases, prediction of disease progression and pre-screening step for physicians. Due to its significant breakthroughs, deep learning is now being used for the diagnosis of arthritis, which is a chronic disease affecting young to aged population. This paper provides a survey of recent and the most representative deep learning techniques (published between 2018 to 2020) for the diagnosis of osteoarthritis and rheumatoid arthritis. The paper also reviews traditional machine learning methods (published 2015 onward) and their application for the diagnosis of these diseases. The paper identifies open problems and research gaps. We believe that deep learning can assist general practitioners and consultants to predict the course of the disease, make treatment propositions and appraise their potential benefits

    CommuNety: deep learning-based face recognition system for the prediction of cohesive communities

    Get PDF
    Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities

    Structure-Feature based Graph Self-adaptive Pooling

    Full text link
    Various methods to deal with graph data have been proposed in recent years. However, most of these methods focus on graph feature aggregation rather than graph pooling. Besides, the existing top-k selection graph pooling methods have a few problems. First, to construct the pooled graph topology, current top-k selection methods evaluate the importance of the node from a single perspective only, which is simplistic and unobjective. Second, the feature information of unselected nodes is directly lost during the pooling process, which inevitably leads to a massive loss of graph feature information. To solve these problems mentioned above, we propose a novel graph self-adaptive pooling method with the following objectives: (1) to construct a reasonable pooled graph topology, structure and feature information of the graph are considered simultaneously, which provide additional veracity and objectivity in node selection; and (2) to make the pooled nodes contain sufficiently effective graph information, node feature information is aggregated before discarding the unimportant nodes; thus, the selected nodes contain information from neighbor nodes, which can enhance the use of features of the unselected nodes. Experimental results on four different datasets demonstrate that our method is effective in graph classification and outperforms state-of-the-art graph pooling methods.Comment: 7 pages, 4 figures, The Web Conference 202

    Automatic and fast classification of barley grains from images: A deep learning approach

    Get PDF
    Australia has a reputation for producing a reliable supply of high-quality barley in a contaminant-free climate. As a result, Australian barley is highly sought after by malting, brewing, distilling, and feed industries worldwide. Barley is traded as a variety-specific commodity on the international market for food, brewing and distilling end-use, as the intrinsic quality of the variety determines its market value. Manual identification of barley varieties by the naked eye is challenging and time-consuming for all stakeholders, including growers, grain handlers and traders. Current industrial methods for identifying barley varieties include molecular protein weights or DNA based technology, which are not only time-consuming and costly but need specific laboratory equipment. On grain receival, there is a need for efficient and low-cost solutions for barley classification to ensure accurate and effective variety segregation. This paper proposes an efficient deep learning-based technique that can classify barley varieties from RGB images. Our proposed technique takes only four milliseconds to classify an RGB image. The proposed technique outperforms the baseline method and achieves a barley classification accuracy of 94% across 14 commercial barley varieties (some highly genetically related)
    corecore